Washington: An international team of astronomers has obtained the most detailed ‘fingerprint’ of a rocky planet outside our solar system to date, and found a planet of two halves: one that is almost completely molten, and the other which is almost completely solid.
According to the University of Cambridge researchers, conditions on the hot side of the planet are so extreme that it may have caused the atmosphere to evaporate, with the result that conditions on the two sides of the planet vary widely: temperatures on the hot side can reach 2500 degrees Celsius, while temperatures on the cool side are around 1100 degrees.
Using data from NASA’s Spitzer Space Telescope, the researchers examined a planet known as 55 Cancri e, which orbits a sun-like star located 40 light years away in the Cancer constellation, and have mapped how conditions on the planet change throughout a complete orbit, the first time this has been accomplished for such a small planet.
55 Cancri e is a ‘super Earth’: a rocky exoplanet about twice the size and eight times the mass of Earth, and orbits its parent star so closely that a year lasts just 18 hours. The planet is also tidally locked, meaning that it always shows the same face to its parent star, similar to the Moon, so there is a permanent ‘day’ side and a ‘night’ side.
Since it is among the nearest super Earths whose composition can be studied, 55 Cancri e is among the best candidates for detailed observations of surface and atmospheric conditions on rocky exoplanets.
Uncovering the characteristics of super Earths is difficult, since they are so small compared to the parent star and their contrast relative to the star is extremely small compared to larger, hotter gas giant planets, the so-called ‘hot Jupiters’.
“We haven’t yet found any other planet that is this small and orbits so close to its parent star, and is relatively close to us, so 55 Cancri e offers lots of possibilities,” said lead author Dr Brice-Olivier Demory. “We still don’t know exactly what this planet is made of – it’s still a riddle. These results are like adding another brick to the wall, but the exact nature of this planet is still not completely understood.”
The results are reported in the journal Nature. (ANI)