3D-printed super strong ceramics in the offing

New York: Researchers have developed a novel way to create ceramics using 3D printing that results in a strong material with little tendency to crack.

Ceramics are tough and are used in everything from jet engines to Formula 1 race car brakes.

Ceramics offer many appealing qualities, including high-temperature stability, environmental resistance and high strength.

But unlike polymers and some metals, ceramic particles don’t fuse together when heated.

The few 3D printing techniques that have been developed for ceramics have slow production rates and involve additives that increase the material’s tendency to crack.

Zak Eckel, engineer at HRL Laboratories in Malibu, California, and colleagues were able to improve upon these processes by using silicon- and oxygen-based polymers that, upon polymerisation, trap the ultra-violet (UV) light so that additives are not needed for the UV curing steps.

Once the polymer is printed, the part is heated to a high temperature to burn off the oxygen atoms, thus forming a highly dense and strong silicon carbide product.

Using electron microscopy to analyse the end product, the researchers detected no porosity or surface cracks.

Further tests reveal that the ceramic material can withstand temperatures of 1,400 degrees Celsius before experiencing cracking and shrinkage and can be fabricated into complex, curved and porous shapes.

According to the authors, these developments, which also create a more efficient ceramic-production process, hold important implications for numerous high-temperature applications, such as in hypersonic vehicles and jet engines.